Viscosity methods giving uniqueness for martingale problems
نویسندگان
چکیده
Let E be a complete, separable metric space and A be an operator on Cb(E). We give an abstract definition of viscosity sub/supersolution of the resolvent equation λu − Au = h and show that, if the comparison principle holds, then the martingale problem for A has a unique solution. Our proofs work also under two alternative definitions of viscosity sub/supersolution which might be useful, in particular, in infinite dimensional spaces, for instance to study measure-valued processes. We prove the analogous result for stochastic processes that must satisfy boundary conditions, modeled as solutions of constrained martingale problems. In the case of reflecting diffusions in D ⊂ R, our assumptions allow D to be nonsmooth and the direction of reflection to be degenerate. Two examples are presented: A diffusion with degenerate oblique direction of reflection and a class of jump diffusion processes with infinite variation jump component and possibly degenerate diffusion matrix.
منابع مشابه
Weak Solutions for Forward – Backward Sdes — a Martingale Problem Approach
In this paper, we propose a new notion of Forward–Backward Martingale Problem (FBMP), and study its relationship with the weak solution to the forward–backward stochastic differential equations (FBSDEs). The FBMP extends the idea of the well-known (forward) martingale problem of Stroock and Varadhan, but it is structured specifically to fit the nature of an FBSDE. We first prove a general suffi...
متن کاملWeak Solutions of Forward-Backward SDEs and Their Uniqueness
In this paper we propose a new notion of Forward-Backward Martingale Problem (FBMP), and study its relationship with the weak solution to the backward stochastic differential equations. The FBMP extends the idea of the well-known (forward) martingale problem of Stroock and Varadhan, but it is structured specifically to fit the nature of a forward-backward stochastic differential equation (FBSDE...
متن کاملMartingale problems for conditional distributions of Markov processes
Let X be a Markov process with generator A and let Y (t) = γ(X(t)). The conditional distribution πt of X(t) given σ(Y (s) : s ≤ t) is characterized as a solution of a filtered martingale problem. As a consequence, we obtain a generator/martingale problem version of a result of Rogers and Pitman on Markov functions. Applications include uniqueness of filtering equations, exchangeability of the s...
متن کاملA new technique for proving uniqueness for martingale problems
A new technique for proving uniqueness of martingale problems is introduced. The method is illustrated in the context of elliptic diffusions in Rd.
متن کاملStochastic Control Problems for Systems Driven by Normal Martingales
In this paper we study a class of stochastic control problems in which the control of the jump size is essential. Such a model is a generalized version for various applied problems ranging from optimal reinsurance selections for general insurance models to queueing theory. The main novel point of such a control problem is that by changing the jump size of the system, one essentially changes the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014